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§ 45 Heat equation on the circle .

Model : Heat diffusion on the unit circle
.
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Suppose we know the temperature distribution
on the circle at t- o .

Question : Find the temperature distribution at
time t .

Let U ( x , t) be the temperature at x in the tinie t .
This question was considered by Fourier, in which he

applied the idea of Fourier series .

In general, U satisfies the following heat equator's
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Next superposing these special solutions , we obtain
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In what follows , we need to verify that the above
series converges, and UE (EI, X (o , b ) ) .

It is easy to check
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In the remaining part we need to verify whether
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Then we claim that
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