Fourier Analysis 03-19
Review.
Thm: Let
$$o < d < 1$$
. Then
 $f_{0} < x = \sum_{n=0}^{\infty} 2^{-nd} e^{j 2^{n}x}$
is continuous but nowhere differentiable, and
so are the real and imaginary parts of f_{a} .
• Fourier series of a function on $[a, b]$
Let $f \in \mathcal{R}[a, b]$. Define
 $\hat{f}(n) = \frac{1}{b^{-a}} \int_{a}^{b} \frac{-2\pi i n}{b^{-a} \cdot x} \frac{1}{b^{-a} \cdot x}$
 $f(x) \sim \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{\frac{2\pi i n}{b^{-a} \cdot x}}$ on $[a, b]$
(b-a)-periodic function
 $e^{x} \mathbb{R}$
• Parseval identity:
 $\frac{1}{b^{-a}} \int_{a}^{b} [f(x)]^{2} dx = \sum_{n \in \mathbb{Z}} [f(n)]^{2}$.

84.5 Heat equation on the circle.
Model: Heat diffusion on the unit circle.

$$-\pi \le 0 \le \pi$$

 $0 = 2\pi \times$
 $0 = 2\pi \times$

By rescaling t, the above equation can be simplied into
$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, & x \in [-t, \pm], t > 0. \\ u(x, o) = f(x). \end{cases}$$
First let us apply the method of "separation of variables".
We try to find out solutions U of 0 with the form $U(x,t) = A^{(x)}B(t)$.
Plug u=A(x)B(t) into 0, we obtain
A(x) B'(t) = A''(x)B(t).
So $\frac{B'(t)}{B(t)} = \frac{A''(x)}{A^{(x)}} = \lambda \ll \text{constant}.$
First we solve the ODE $A''(x) - \lambda A^{(x)} = 0$
and we would like to find a 1-periodic solution A(x)
on R.
Recall $A^{(x)} = \begin{cases} c_1 e^{-t} + c_2 e^{-t} & \text{if } \lambda > 0 \\ c_1 e^{-t} + c_2 e^{-t} & \text{if } \lambda = 0 \end{cases}$

To ensure that
$$A(x)$$
 is 1-periodic, we must have
 $\lambda \le 0$, and $\sqrt{-\lambda} = 2n\pi$ for $n \in \mathbb{Z}$
i.e.
 $\lambda = -4n^{2}\pi^{2}$, $n \in \mathbb{Z}$.
Recall that $B'(t) + 4n^{2}\pi^{2}B(t) = 0$ when $\lambda = 4n^{2}\pi^{2}$.
 $B(t) = Be^{-4n^{2}\pi^{2}t}$.
So $A(x)B(t) = C_{1}e^{-4n^{2}\pi^{2}t}e^{2\pi i nx}$
 $+ C_{2}e^{-4n^{2}\pi^{2}t}e^{-2\pi i nx}$, $n \in \mathbb{Z}$.
Next superposing these special solutions, we obtain
 $U(x,t) = \sum_{n \in \mathbb{Z}} Q_{n}e^{-4n^{2}\pi^{2}t}e^{2\pi i nx}$
 $U(x,c) = f(x)$ where $f \in \mathbb{R}[-\frac{1}{2}, \frac{1}{2}]$.
We obtain that
 $\sum_{n \in \mathbb{Z}} Q_{n}e^{-4n^{2}\pi^{2}t}e^{-2\pi i nx}$
 $\sum_{n \in \mathbb{Z}} Q_{n}e^{-4n^{2}\pi^{2}t}e^{2\pi i nx}$.

i.e
$$\sum_{n \in \mathbb{Z}} \widehat{f}(n) \cdot (-4\pi^{2}n^{2}) \cdot \widehat{e}^{-4\pi^{2}n^{2}t} \cdot e^{2\pi\pi^{2}n^{2}t}$$

Heus it CONVERSES abs.
(check: $4\pi^{2}n^{2}t \cdot e^{-4\pi^{2}n^{2}t}$
 $\leq e^{-nt}$ when
 $n \text{ is large}$
Similarly, $\frac{\partial u}{\partial x}$ exists everywhere
and so do the higher older derivatives of \mathcal{U} .
Hence $\mathcal{U} \in C^{\infty}([-\frac{1}{2}, \frac{1}{2}] \times (0, \infty))$.
 $\frac{\partial u}{\partial t} = \sum_{n \in \mathbb{Z}} (-4n^{2}\pi^{2}) \widehat{f}(n) e^{-4\pi^{2}n^{2}t} e^{2\pi\pi^{2}nx}$
 $\frac{\partial^{2}u}{\partial x^{2}} = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{-4\pi^{2}n^{2}t} \cdot (2\pi\pi^{2}n)^{2} e^{2\pi\pi^{2}nx}$
 $= \sum_{n \in \mathbb{Z}} (-4\pi^{2}n^{2}) \widehat{f}(n) e^{-4\pi^{2}n^{2}t} e^{2\pi\pi^{2}nx}$
So we have $\frac{\partial u}{\partial t} = \frac{\partial^{2}u}{\partial x^{2}}$, hence \mathbb{D} is schisfied.

In the remaining part we need to Venify whether
or not U subsplies the initial condition.
Since U is not well-defined on
$$[\pm,\pm] \times \{0\}$$
,
the initial condition should be understood as the
following:
lim $U(x,t) = f(x)$.
 $t \ge 0$
Prop!: For $f \in \mathbb{R}[\pm,\pm]$, we have
 $\lim_{t \ge 0} \int_{-\frac{1}{2}}^{\pm} | u(x,t) - f(x) |^{2} dx = 0$.
(i.e. $U(x,t)$ converges to $f(x)$ in L^{2} sense.
Pf. Notice that by Parseval identity (applying
to $U(x,t) - f(x) |^{2} dx = \sum_{n \in \mathbb{Z}} | f(n) e^{-4\pi i n^{2}t} - f(n) |^{2}$

$$\left(\begin{array}{c} \text{Recall that} \quad \mathcal{U}(x,t) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{-4\pi^{2}h^{2}t} e^{2\pi i nX}\right)$$
We need to show that
$$\sum_{n \in \mathbb{Z}} \left[\widehat{f}(n)\right]^{2} \left[e^{-4\pi^{2}n^{2}t} - 1\right]^{2} \rightarrow 0 \quad \text{as } t \rightarrow 0.$$

$$n \in \mathbb{Z} \quad \left[\widehat{f}(n)\right]^{2} \left[e^{-4\pi^{2}n^{2}t} - 1\right]^{2} \rightarrow 0 \quad \text{as } t \rightarrow 0.$$

$$(\text{Justification}: \sum_{n \in \mathbb{Z}} |\widehat{f}(n)|^{2} < \infty.$$

$$\forall \ \Sigma > 0, \ \exists \ N \ \text{such that}$$

$$\sum_{|n| > N} |\widehat{f}(n)|^{2} < \Sigma.$$

$$\text{Then we can take a small } S > 0 \quad \text{s.t.}$$

$$\sum_{|n| < N} |\widehat{f}(n)|^{2} \left[e^{-4\pi^{2}n^{2}t} - 1\right]^{2} < \Sigma. \text{for } 0 < t < \delta.$$

$$\text{Hence for } 0 < t < \delta.$$

$$\text{Hence for } 0 < t < \delta.$$

$$\sum_{|n| \le N} |\widehat{f}(n)|^{2} \left[e^{-4\pi^{2}n^{2}t} - 1\right]^{2} = \sum_{|n| \le N} |\widehat{f}(n)|^{2} \left[e^{-4\pi^{2}n^{2}t} - 1\right]^{2}$$

+
$$\sum_{|n| \ge N} |f(n)|^{2} |e^{-4\pi^{2}n^{2}t} - ||^{2}$$

 $\le 2 + \sum_{|n| \ge N} |f(n)|^{2} |e^{-4\pi^{2}n^{2}t} - |e^{-4\pi^{2}n^{2}t} |e^{-4\pi^{2}n^{2}t} - |e^{-4\pi^$

Then we claim that

$$\begin{cases} Ht \\ t > 0 \end{cases} is a good Revnel on [-t, t] \\
as t > 0. \\
Clearly Prop > follows from the above claim. \\
Now we need to check the following.
: D $\int_{-t}^{t} H_t(x) dx = 1 \quad \forall t > 0.$
(2) $\int_{-t}^{t} |H_t(x)| dx < M \quad \forall t > 0.$
(3) $\forall s > 0.$
 $\int_{-t}^{t} |H_t(x)| dx \rightarrow 0 \quad as t \rightarrow 0.$
 $\int_{s < |x| < t}^{t} H_t(x) dx \rightarrow 0 \quad as t \rightarrow 0.$
 $\int_{s < |x| < t}^{t} H_t(x) dx$
 $= \int_{-t}^{t} \sum_{n \in \mathbb{Z}} e^{-4\pi^n n^2 t} e^{2\pi i n x} dx$
 $= \sum_{n \in \mathbb{Z}} \int_{-t}^{t} e^{-4\pi^n n^2 t} e^{2\pi i n x} dx$$$

= 1.
(a)
$$H_{t}(x) > o \quad \forall \quad t > o, \quad x \in [-\frac{1}{2}, \frac{1}{2}].$$

This fact comes from the following annazing fact:
 $H_{t}(x) = \sum_{n \in \mathbb{Z}} \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x+n)^{2}}{4t}}, \quad \forall \quad t > o, \quad x \in [\frac{1}{2}, \frac{1}{2}].$
(b) Let $o < \delta < \frac{1}{2}.$
 $\int H_{t}(x) \, dx$
 $\delta < |x| < \frac{1}{2}.$
 $H_{t}(x) \, dx$
 $\delta < |x| < \frac{1}{2}.$
 $Notice that for any $n \in \mathbb{Z}, \quad \delta < |x| < \frac{1}{2}.$ One has
 $|x+n| \ge (|n|+1) \cdot \frac{\delta}{2}.$
Thun $\int e^{-\frac{(x+n)^{2}}{4t}} dx$
 $\delta < |x| < \frac{1}{2}.$
 $\int e^{-\frac{(x+n)^{2}}{4t}} dx$
 $\delta < |x| < \frac{1}{2}.$$

 $\leq \left(\frac{1}{\sqrt{4\pi t}} \cdot e^{-\frac{S^2}{16t}}\right) \cdot e^{-|n|\frac{S^2}{4t}}$ $\sum_{\mathbf{n}\in\mathbb{Z}} \left(\begin{array}{c} \bot & \frac{-s^2}{16t} \\ \sqrt{4\pi}t & e^{\frac{-s^2}{16t}} \end{array} \right) \cdot e^{\frac{-|\mathbf{n}|s^2}{16t}}$ $\leq \frac{1}{\sqrt{4\pi t}} \cdot \frac{2 e^{-s^2/(6t)}}{1 - e^{-s^2/(16t)}} \rightarrow 0 \text{ as } t \Rightarrow 0$